Kubeflow Samples

Examples that demonstrate machine learning with Kubeflow

This section introduces the examples in the [kubeflow/examples](https://github.com/kubeflow/examples) repo.

Semantic code search

Use a Sequence to Sequence natural language processing model to perform a semantic code search. This tutorial runs in a Jupyter notebook and uses Google Cloud Platform (GCP).

Read

Financial time series

Train and serve a model for financial time series analysis using TensorFlow on GCP.

Read

GitHub issue summarization

Infer summaries of GitHub issues from the descriptions, using a Sequence to Sequence natural language processing model. You can run the tutorial in a Jupyter notebook or using TFJob. You use Seldon Core to serve the model.

Read

MNIST image classification

Train and serve an image classification model using the MNIST dataset. You can choose to train the model locally, using GCP, or using Amazon S3. Serve the model using TensorFlow.

Read

Object detection - cats and dogs

Train a distributed model for recognizing breeds of cats and dogs with the TensorFlow Object Detection API. Serve the model using TensorFlow.

Read

PyTorch MNIST

Train a distributed PyTorch model on GCP and serve the model with Seldon Core.

Read

Ames housing value prediction

Train an XGBoost model using the Kaggle Ames Housing Prices prediction on GCP. Use Seldon Core to serve the model locally, or GCP to serve it in the cloud.

Read